A curvilinear method based on minimal-memory BFGS updates

نویسندگان

  • M. S. Apostolopoulou
  • D. G. Sotiropoulos
  • C. A. Botsaris
چکیده

We present a newmatrix-free method for the computation of negative curvature directions based on the eigenstructure of minimal-memory BFGS matrices. We determine via simple formulas the eigenvalues of these matrices and we compute the desirable eigenvectors by explicit forms. Consequently, a negative curvature direction is computed in such a way that avoids the storage and the factorization of any matrix. We propose a modification of the L-BFGS method in which no information is kept from old iterations, so that memory requirements are minimal. The proposed algorithm incorporates a curvilinear path and a linesearch procedure, which combines two search directions; a memoryless quasi-Newton direction and a direction of negative curvature. Results of numerical experiments for large scale problems are also presented. 2010 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Criterion for the Limited Memory BFGS Algorithm for Large Scale Nonlinear Optimization

This paper studies recent modi cations of the limited memory BFGS (L-BFGS) method for solving large scale unconstrained optimization problems. Each modi cation technique attempts to improve the quality of the L-BFGS Hessian by employing (extra) updates in certain sense. Because at some iterations these updates might be redundant or worsen the quality of this Hessian, this paper proposes an upda...

متن کامل

Extra-Updates Criterion for the Limited Memory BFGS Algorithm for Large Scale Nonlinear Optimizatio

This paper studies recent modifications of the limited memory BFGS (L-BFGS) method for solving large scale unconstrained optimization problems. Each modification technique attempts to improve the quality of the L-BFGS Hessian by employing (extra) updates in a certain sense. Because at some iterations these updates might be redundant or worsen the quality of this Hessian, this paper proposes an ...

متن کامل

Transformations enabling to construct limited-memory Broyden class methods

The Broyden class of quasi-Newton updates for inverse Hessian approximation are transformed to the formal BFGS update, which makes possible to generalize the well-known Nocedal method based on the Strang recurrences to the scaled limited-memory Broyden family, using the same number of stored vectors as for the limited-memory BFGS method. Two variants are given, the simpler of them does not requ...

متن کامل

Generalizations of the limited-memory BFGS method based on the quasi-product form of update

Two families of limited-memory variable metric or quasi-Newton methods for unconstrained minimization based on quasi-product form of update are derived. As for the first family, four variants how to utilize the Strang recurrences for the Broyden class of variable metric updates are investigated; three of them use the same number of stored vectors as the limitedmemory BFGS method. Moreover, one ...

متن کامل

Notes on Limited Memory Bfgs Updating in a Trust{region Framework

The limited memory BFGS method pioneered by Jorge Nocedal is usually implemented as a line search method where the search direction is computed from a BFGS approximation to the inverse of the Hessian. The advantage of inverse updating is that the search directions are obtained by a matrix{ vector multiplication. Furthermore, experience shows that when the BFGS approximation is appropriately re{...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 217  شماره 

صفحات  -

تاریخ انتشار 2010